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We consider the rational Zolotarev problem

for compact sets E, F~ C, where R li denotes the set of all rational functions of
degree ,,;; I. This problem is of importance, e.g., for the determination of optimal
parameters for the method of alternating directions (ADI method) which is used for
the iterative solution of large linear systems. ForE and F being real intervals, the
solution of this problem was given explicitly in terms of elliptic functions by
Zolotarev in the last century. For complex domains, however, little is known as yet
about this problem. In this paper, after reviewing some results on the asymptotic
behavior, we prove a result which is similar to the near-circularity criterion as it is
well known in connection to classical approximation by polynomials or rational
functions. If we assume that both sets E and F are bounded by Jordan curves, this
gives us a lower bound for the minimal value in the rational Zolotarev problem.
Moreover, we derive upper bounds for the modulus of the doubly connected region
D := C\(Eu F) and show how the near-circularity criterion can be used for the
construction of the rational minimal solutions for small degrees. © 1992 Academic

Press. Inc.

1. INTRODUCTION

Various applications, e.g., the optimization of the ADI (alternating direc­
tion implicit) iterative method for the solution of large linear systems and
the construction of digital filters, lead to the rational minimization problem

. maxzEE Ir(z)1
mln . ,
rER" mlll zEF jr(z)j
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where E and F are disjoint compact subsets of the complex plane and Rll

denotes the set of all rational functions of degree ~ I. If E and F are real
intervals, the solution of Problem (Ll) has been intensively studied. For
E= [-1, IJ, F= (-00, -kJ u [k, 00) with k> 1, (Ll) is the third offour
approximation problems which were solved by Zolotarev in the years 1868,
1877, and 1878 (see, e.g. the review paper of Todd [15J). In this case, the
solution can be given explicitly in terms of elliptic functions and, using
bilinear transformations, also for arbitrary disjoint intervals E, F £; ~

(Lebedev [10J, Wachspress [18J). Because of the analogy to the problem
stated and solved by Zolotarev for the real case, Gonchar [7J suggested
that (Ll) be called the rational Zolotarev problem (in the complex plane).

From now on, we assume that E and F are both Jordan regions, since
this is required in Section 3 for the near-circularity criterion. This is not a
severe restriction if we think of applications, e.g., the determination of ADI
parameters, where E and F are domains containing the spectra of the
matrices in the ADI splitting.

In [7J, Gonchar studied the asymptotic behavior of this problem for E
and F being disjoint closed subsets of the extended complex plane C such
that each one has connected complement. Under these assumptions it can
be deduced from Gonchar's result that, for the minimal value in the
rational Zolotarev problem (Ll),

(
_. maxZE E Ir(z)1

(J I E, F) - mm . ,
rERn mmzEF Ir(z)1

lim ((J I(E, F) )1/1= p(E, F) - \
1_00

where p(E, F) denotes the modulus of the doubly connected region
D := C\(E u F). Examples of asymptotically minimal rational functions, i.e.,
sequences of rational functions {rI} lEN with the property

can be constructed by generalizations of the Fejer and Leja points which
play an important role in connection with polynomial interpolation in the
complex plane (see Gaier [5J). The generalized Fejer points are the "doubly
connected special case" of a point set introduced by Walsh in [20]. Their
construction requires the knowledge of the conformal map 'P of the
annulus {w E C : 1 < Iwi < p(E, F)} onto D. In contrast to this, the
generalized Leja points which were introduced by Bagby [1] in 1969 are
defined recursively. Their construction requires only the computation of
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maximum points on the boundaries oE and of which makes them very
useful in practice. Another sequence of asymptotically minimal rational
functions which is based on the conformal map 'P is given by the "Faber
rationals" of Ganelius [6]. A different approach to the complex rational
Zolotarev problem was given by Ellner and Wachspress in [4]. They show
that the optimal rational functions for the real case are also optimal for
some "elliptic function domains" in the complex plane. The results obtained
using these rational functions are often rather promising even though they
are, in general, neither optimal nor asymptotically optimal.

It is the main purpose of this paper to state and prove a result which is
similar to the near-circularity criterion-which is well known in connection
with polynomial and rational approximation of analytic functions in the
complex plane (see Trefethen [16, 17]). Moreover, we show how this result
can be used to solve the rational Zolotarev problem for small degrees I.

In the following section we summarize some known results on the
asymptotic behavior of the rational Zolotarev problem and introduce
Walsh's point set as generalized Fejer points. Furthermore, we present a
technique for the computation of the generalized Leja points for piecewise
differentiable boundary curves (using one-dimensional minimization
algorithms instead of replacing the boundary by a discrete point set).

Section 3 contains the near-circularity criterion, its proof, and its
geometric interpretation. Moreover, we deduce two corollaries on how
improved lower bounds for the minimal value in the rational Zolotarev
problem can be obtained. This leads to upper bounds for the modulus of
the corresponding complementary region D.Finally, in Section 4, the exact
minimal solutions for (1.1) are constructed for small degrees of the rational
functions and the results are compared with the asymptotically minimal
rational functions of higher degree.

2. THE ASYMPTOTICAL BEHAVIOR OF THE RATIONAL ZOLOTAREV PROBLEM

As pointed out in the introduction, it is reasonable to assume that the
disjoint compact sets E, F£ iC are bounded by Jordan curves. Thus, the
complementary region D := iC\(E u F) is doubly connected and neither E
nor F reduces to a single point. Under these assumptions it is well known
that there exists a conformal map rp of D onto a circular annulus
{wEiC:l<lwl<p(E,F)} (see Henrici[8J). The number p(E, F) is
uniquely determined and is called the modulus of the doubly connected
region D.

The main result about the asymptotic behavior of the rational Zolotarev
problem is
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THEOREM 2.1. For the minimal value in the rational Zolotarev problem
(1.1 ),

there hold

and

(E F)
_ . maxzEE Ir(z)1

a l , - mIn . ,
rER, mmzEF Ir(z)1

--+ co

(2.1 )

(2.2)

(2.3 )

(2.4 )

The inequality (2.2) can be deduced directly from the results of Gonchar
on the rate of growth of rational functions [7] which were proved for more
general sets E and F there. To prove (2.3) one has to construct a sequence
of rational functions {r1}IEN, rER a which fulfills the condition

lim (m~XZEE Ir/(z),)1/1 = p(E, F)-I.
1--+ co mmzEF Irlz)1

We call sequences of rational functions fulfilling (2.4) asymptotically
minimal for the rational Zolotarev problem.

We will now present two examples of such asymptotically minimal
rational functions. They are both generated by point sets which are
generalizations of uniformly distributed nodes. The concept of uniformly dis­
tributed nodes is important in connection with polynomial interpolation in
the complex plane (cr. Gaier [5, Chap. II.2]) and semiiterative methods for
the solution of linear systems (cf. Eiermann and Niethammer [3]). We
start here with the corresponding generalization of the system of the Fejer
nodes.

To define these generalized Fejer nodes, we need the conformal mapping
function 'P of the annulus {w E C : 1< Iwl < p(E, F)} onto the doubly con­
nected region D = C\(E u F), i.e., the inverse of the conformal mapping f/J
introduced at the beginning of this section. Since oE and of are given by
Jordan curves, 'P has a continuous extension onto 15 and we call the points

j= 1, ..., I, (2.5)

the Ith generalized Fejer nodes for the rational Zolotarev problem.
That the rational functions
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generated by the generalized Fejer nodes of (2.5) form an asymptotically
minimal sequence can be deduced from the fact that, for the doubly
connected case, they coincide with the points constructed by Walsh in the
proof of Theorem 9 in Chapter 8 of [19] (cf. [13, Theorem 2.4]). In [20],
Walsh shows the asymptotical minimality of these points.

With the generalized Fejer nodes, rational functions which are
asymptotically minimal for the minimization problem (1.1) can be con­
structed for arbitrary compact sets E and F where the complementary
region D = C\(E u F) is doubly connected. However, one needs the confor­
mal map 'P of the annulus {w E C : 1< Iwl < p(E, F)} onto D, which is
known explicitly only for very rare special cases. Moreover, the numerical
determination of this mapping function is, in general, very expensive, which
restricts the use of these points in practice drastically. In particular, for
polygonal boundary curves-for example, those the rectangular domains
containing the spectra of the operators in the ADI splitting as they are
obtained using Bendixson's theorem (cf., e.g., [14, Theorem 6.9.15J)-we
could make use of the implementation of the Schwarz-Christoffel map for
the doubly connected case (cf. Henrici [8, Paragraph 17.5]) as it is
described in [2].

Another system of uniformly distributed nodes is given by the Leja
nodes. The following generalization for the Leja points to the rational
Zolotarev problem is due to Bagby [1].

Given ({J1EE and l/J1EF arbitrarily, for 1=1,2, ... the new points
({J 1+ 1 E E, t/J 1+ 1 E F are chosen recursively in such a way that with

the two conditions

maxZE E Irl(z)1 = Irl«({JI+ dl

minzEF Irl(z)1 = !rl(t/J 1+ dl
(2.6)

are fulfilled.
Bagby shows in [1] that the rational functions r1 obtained by this proce­

dure are asymptotically minimal for the rational Zolotarev problem.
However, this is still true if we start with a set of points ({Jj E C\F, ljIj E C\E,
j= 1, ..., k and then carry out the recursive procedure described in (2.6).
This more general formulation requires only slight modifications of
the original proof (cf. [13, Theorem 2.5]). For piecewise differentiable
boundary curves the following strategy for the determination of the
generalized Leja points in practice is near at hand: First, all the points on
aE and aF, respectively, where the boundary is not differentiable have to

640/70/1-9
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be chosen as zeros, respectively as poles. After ensuring that the degrees in
the numerator and denominator are equal, one computes the further points
by the recursive procedure of (2.6). In practice this is now done by finding
the local maximum of the function Ir(zW on the boundary curve between
two Leja points and then choosing the maximum of all these points as the
new Leja point. Between two Leja nodes one can now determine the local
maximum numerically by using the derivative of Ir(zW with respect to the
corresponding parametrization of the boundary, for example with the
algorithm described in Section 10.3 in [11]. The generalized Leja points
can be determined numerically in a relatively efficient way for a large class
of boundary curves oE and of and they have the very advantageous
property that once computed points remain Leja points for all larger
degrees. Moreover, the recursive construction automatically yields the
value

maxzEE Ir[(z)1

minzE F Ir[(z)1

in each step and with this information one can increase the degree of the
rational function until this value is less than a given bound.

The generalized Leja points as well as the generalized Fejer points are
asymptotically minimal, indeed, but, in general, this behavior becomes
significant only for very large values of I. Roughly speaking, this can be
explained with the fact that the location of the zeros and poles of the
corresponding rational function is restricted to oE and of, respectively.
This will become clear in the following example, where the rational
minimal solutions are known explicitly.

EXAMPLE. We consider disks which are symmetric with respect to the
origin, i.e.,

E= {ZEC: Iz-ctl :s.;;p}, F=-E

with 0 < p < ct. In Section 3 it will be shown that the exact minimal
solutions are given by

The values

_ (maXZEE Ir[(z)l)l/[
r[-

minzEF Ir[(z)1

for the rational functions generated by the generalized Fejer and Leja
points (rrei and rfei ) are compared with the exact minimal solution (rn in



COMPLEX RATIONAL ZOLOTAREV PROBLEM 121

TABLE 2.1

p=0.9o:

r Fej r Lej r(I I

2 0.6807 0.6807 0.3929
4 0.5491 0.5491 0.3929
8 0.4671 0.4871 0.3929

16 0.4284 0.4584 0.3929
32 0.4103 0.4357 0.3929
CIJ 0.3929 0.3929 0.3929

Table 2.1. The generalized Fejer points can also be calculated explicitly
here since the conformal mapping 'P is given by

with

'P(w) = 6 w +Y
w-y

(2.7)

6= -Ja2
_ p2,

and p(E, F) = y2. For the determination of the Leja points we started there
with qJl =a+ p, qJ2 =a- P and t/Jj = -qJj, t/J2= -qJ2'

From Theorem 2.1 we know that

lim rfe} = lim rfe} = 0.3929
1-700 l~oo

holds but, as we can see here, the convergence is rather slow.

3. A NEAR-CIRCULARITY CRITERION FOR

THE RATIONAL ZOLOTAREV PROBLEM

The near-circularity criterion for the rational approximaton of an
analytic function on a compact subset of the complex plane as it was
proved by Klotz [9] for the case of the unit circle and by Trefethen
[16, 17] for arbitrary Jordan domains has the following generalization. for
the rational Zolotarev problem.

THEOREM 3.1. Let the boundaries 8E and 8F of the disjoint sets E and F
be given by Jordan curves and assume further that the rational function
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r E R/l possesses I zeros in E and I poles in F. If r* E R/l denotes the minimal
solution for the rational Zolotarev problem (1.1), then

minzEoE Ir(z)1 maxzEE Ir*(z)1 maxzEE Ir(z)1
-~-=-.:.-.:.......:...:. & & (3.1 )
maxzEoF Ir(z)1 '" minzEF Ir*(z)[ '" minzEF Ir(z)1

holds.

Proof The second inequality is trivial.
Moreover, the first inequality is automatically true if one of the zeros of

r lies on oEor one of the poles of r is located on oF. Therefore, we can
assume in the sequel that these points are all in the interior of the
corresponding sets.

Assume that the first inequality is not fulfilled. This implies that there is
a rational function, E R/l with

maxzEoE 1,(z)1 minzEoE Ir(z)/

minzEoF W(z)[ < maxzEoF Ir(z)I'

By multiplying, by a positive constant c which fulfills

maxzEOE W(z)1 1 minzEoF 1,(z)1
minzEoE Ir(z)1 < ~ < maxzEoF Ir(z)I'

we obtain

maxzEoE W(z)1 <minzEoE /r(z)l,

maxzEoF I'(~) 1< minzEoF Ir(~) I,
and from this

l1(z)1 < /r(z)1 for zEoE,

for zEoF.

By Rouch6's Theorem the functions , - rand r have the same number of
zeros in EO, namely I, and, similarly, 1/, - l/r and l/r have I zeros in FO.
So we have found 21 points now (l in EO and I in FO) where the functions
rand, have the same value.

Let us consider now an arbitrary curve r which connects the sets E and
F. Since W(z)/ < Ir(z)1 on oE and 11(z)1 > Ir(z)1 on of, by continuity
arguments there is a point Zo E r with W(zo)1 = Ir(zo)/. The rational
function , was only determined up to a constant of absolute value 1 at



COMPLEX RATIONAL ZOLOTAREV PROBLEM 123

this stage. So, by multiplying; by q := r(zo)/;(zo) (and again denoting this
function by n, we obtain ;(zo) = r(zo), too.

With this, we have found 21 + 1 zeros in total of the rational function
i' - r E 1R 21•21 (note that Zo is neither contained in E nor in F) which was
assumed not to vanish identically. This is, of course, a contradiction. I

Now is the time to justify the notation "near-circularity criterion." If we
consider, as a generalization of the error curves introduced by Trefethen
[16, 17], the "ring-shaped" domains

{
f(A) )

C(r):= -:Jc EiJE, J1 E 3F't,
r(J1) )

then our "generalized near-circularity criterion" asserts that the minimum
distance of C(r) to the origin gives a lower and the maximum distance
gives an upper bound for the best possible value in the rational Zolotarev
problem. This means that if C(r) reduces to a perfect circle around the
origin we can be sure that we have found a minimal solution for the
rational Zolotarev problem.

That such situations, where we can apply our generalized near-circularity
criterion to prove the minimality of a rational function, really occur, is
shown by the following example, which already appeared in the last
section.

EXAMPLE. We consider again the case that E and F are disjoint disks
which are symmetric with respect to the real line, e.g.,

with IX j -Pj>IX2+P2,Pj,P2>O. We show now that the solution of the
rational Zolotarev problem (1.1) is given by

(
z <p)lr*(z)= --
z-ljJ

with

and

<p = IXi - pi - (IX~ - pD + A
2(IX j - IX 2 )

ljJ = IXi - pi - (IX~ - p~) - A,
2(IXj- IX2)

(3.2)

(3.3 )
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where we set
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c;= [(ctl-ct2)2_(pi+p~)]2-4Pfp~·

For Z E oE, i.e., Z = ctl +PI w with Iwl = 1, there holds

r*(z) = (ct l +PI W - ip)'
ctl+PIW-ljJ

and, since

0(1 - ip = (0(1 - 0(2)2 + pi - p~ - A

PI 2PI(ct l -0(2)

2Pl(ctl - 0(2)

we obtain

Analogously,

hence,

Ir(z)j = CIP~ ljJ)' for zEoE.

for zEoF;

Ir(A)1 = (PI ljJ - ct2)/ = ((ct l - 0(2)2 - (pi + p~) - A)'

Ir(fl)1 P2 ct l -ljJ 2PlP2

for each AE oE, fl E of. By

ct l - ip = (ct l - 0(2)2 + pi - p~ - A < 1

ctl-ljJ (0(1-0(2)2+pi-p~+A

and

ct2-ip = -(ctl-ct2?+pi-p~-A > 1

ct2-ljJ -(ctl-ct2)2+pi-p~+A

it follows from (3.4) that the zero ip of multiplicity I is contained in EO and
the pole ljJ of multiplicity I in F O

, which enables us to apply Theorem 3.1.
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Unfortunately, these situations-where the set C(r) represents a perfect
circle around the origin-occur only very rarely. For instance, consider the
case where E and F are given by real intervals. There, the minimal solution
is characterized by an alternation condition (Wachspress [18]), i.e., q r) is
also a real interval. Thus, from Theorem 3.1 we get zero as a lower bound
for the minimal deviation which is trivially true. Indeed, a real interval is
not a Jordan curve but it can be interpreted as the limiting case of ellipses.
So, it can be expected that, roughly speaking, we obtain error curves that
become more and more "flat" the more the sets E and F tend to intervals.

To enable us to show that we have a rational function which is not far
away from the solution of the minimization problem (1.1) the set qr) has
not necessarily to be very circular. If we look a little closer at Theorem 3.1
we see that we can admit all rational functions which have all their zeros
in E and all their poles in F. From this, we obtain

COROLLARY 3.2. Let the sets E and F fulfill the assumptions of
Theorem 3.1. Further denote by Rll the set of all rational functions of degree
I which have all their zeros in E and all their poles in F; then there holds:

(3.5)

An immediate consequence of (2.3), of Corollary 3.2, and of the fact that,
for any rational function r E R ll , we have rk E Rkl,kl is

COROLLARY 3.3. Using the same assumptions and notations as in
Corollary 3.2, we have, for each lEN,

(
minzEaE Ir(z)1 )1/

1:;0:: (E F)-I:;o:: ( . maxzEE [r(z)I)1/
1

max ""p, "" mm . .
rERn maxzdF Ir(z)1 rERn mm zEF Ir(z)1

(3.6)

This means that, using the near-circularity criterion, we obtain upper
bounds for the modulus of the doubly-connected region D := C\(Eu F).
Lower bounds for the modulus were established before using Gonchar's
result (2.2).

4. COMPUTATIONAL RESULTS

As an example, let us consider the minimization problem (1.1) on
rectangles

E= {zEiC: rx,,;;Rez,,;;fJ, [Imzl ,,;;y};

F= {zEiC: -fJ";;Rez,,;; -rx, Ilmzl ,,;;y}
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with 0 < IX < /3. This problem arises from the determination of optimal AD!
parameters if we use Bendixson's theorem to get rectangles E and F which
contain the eigenvalues of the parts in the ADI splitting.

We computed the rational minimal solutions for 1= 1, 1=2 and 1=4
using standard minimization algorithms (cr. [11, Sect. 10]). For 1= 1 and
1=2 this can be reduced to several one-dimensional minimization problems
as described in [12]; for 1=4 we minimized

max zEE Ir(z)1

minzEF Ir(z)1

for

with respect to the parameters (J'3' (J'2, (J'1> (J'0 E Ih£. It should be remarked
that the symmetry, i.e., r( -z)= l/r(z), as well as the fact that the coef­
ficients are all real is justified by our computational results but not proved
in general.

Although the near-circularity criterion cannot be applied directly here to
show that the constructed rational functions are indeed the minimal
solutions, we can use it to give some insight to the problem. Let

111 :=max Ir(z)l,
ZEE

112 := min Ir(z)l;
ZEF

then, clearly, the solution of the rational Zolotarev problem is also
the solution for the sets E, F enclosed by the rational lemniscates
r 1 := {ZEC: Ir(z)1 =l1d and r2 := {ZEC: Ir(z)1 =112}' On the other
hand, the rational Zolotarev problem has the geometrical interpretation
that we have to enclose the compact sets E and F by rational lemniscates
in such a way that 11J!112 is minimized.

FIG. 4.1. fJ = y = 2a, 1= 1, 2, 4.
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TABLE 4.1

cf, f3=2rt.

y=0.25rt. y=0.5rt. y=rt. y=2rt. y=4~

1 0.0374 0.0627 0.1716 0.3820 0.6096
2 0.0338 0.0603 0.1086 0.2560 0.4825
4 0.0276 0.0547 0.1086 0.2069 0.4243

For 1=1 the rationallemniscates are obtained from

\
z - qJ I-- =IJ
z-if;

or

(4.1 )

This means that, for the case 1=1, the geometrical interpretation of
the rational Zolotarev problem is to find a circle with midpoint
(qJ -l1i if; )/(1-1Ji) and radius (I] t/( 1 -11m 1qJ -if; I enclosing the set E and
a circle with midpoint (qJ-I]~if;)/(l-I]D and radius ('12/(1-1JmlqJ~if;1

enclosing the set F in such a way that 1'11/1]2 is minimal. With this
illustrative formulation, the rational Zolotarev problem can be solved for
1= 1 for a large number of exemplary regions.

The rational lemniscates T 1 are shown in Fig. 4.1. This figure seem to
indicate that the results obtained using rationalfunctions of degree 2 and
4 are far better than those with only 1 parameter. In Table 4.1 We have
listed the numbers

*(E F) _ ( . max zEE Ir(2),)1
/
1'I , - mm .

rERn mm zEF Ir(z)1

TABLE 4.2

ii' f3=2rt.

y =0.25rt. y=0.5rt. y=rt. y=20: y=40:

1 0.0102 0.0294 0.0294 0.0294 0.0294
2 0.0165 0.0294 0.0700 0.1263 0.1587
4 0.0170 0.0322 0.0722 0.1552 0.2640

(4.2)
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FIG. 4.2. P= y = 2rx, 1=1, 2, 4.

for 1= 1, 2, 4 and some rectangles with f3 = 21X and different values of y. By
Corollary 3.2 the values

_ ( minzEoE Ir(z)1 )1//
1:/= max

rEttll max zE8F Ir(z)1
(4.3 )

given in Table 4.2 are lower bounds for these quantities. The geometrical
interpretation of the determination of the values i in Table 4.2 is that we
have to put a rational lemniscate into the considered rectangle in an
optimal way. This is illustrated in Fig. 4.2.

To get more detailed information about the asymptotic convergence
behavior we compute the generalized Leja points by the method given in
Section 2 starting with

({J1/2 = IX ± iy, ({J3/4 = f3 ± iy,

and t/Jj= -({Jj,j= 1, ..., 4.
Comparing the values of Table 4.1 with those of Table 4.3 shows that the

asymptotic behavior is surprisingly well approximated for 1=4 and some­
times even for 1=2. Note that the numbers listed in Table 4.3 as well as in
Table 4.1 give upper bounds for p(E, F)-I, whereas the numbers of
Table 4.2 are lower bounds for this quantity. This means that, using only

TABLE 4.3

!rej
, p= 2rx

y=0.25rx y=0.5rx y=rx y=2rx y=4rx

4 0.0425 0.0892 0.2000 0.4385 0.7376
8 0.0336 0.0607 0.1382 0.3013 0.6288

16 0.0282 0.0539 0.1066 0.2243 0.4239
32 0.0262 0.0489 0.0982 0.2109 0.4002
64 0.0251 0.0453 0.0927 0.1963 0.3706
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rational functions of degree 4, we obtain the bounds 0.1552 ~ p(E, F) -1 ~

0.2069 for the example of Fig. 4.1 and 4.2. If we also use the computational
results for the Leja points, this is improved by 0.1552 ~ p(E, F) ~ 1~ 0.1963.

It is clear from (2.3) that the upper bounds are sharp for I~ 00. An
interesting open question would be: Is the same true for the lower bounds,
i.e., is the identity

correct?

1· ( minZE 8E /r(z)/ )1/1 (E F)-11m max =p ,
I~oo rdtu maxzE8F Ir(z)1
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